\u6700\u8fd1\u3001\u8ad6\u6587\u3092\u8aad\u3093\u3067\u3082\u982d\u306b\u6b8b\u3089\u306a\u3044\u611f\u3058\u304c\u3057\u3066\u3001\u300c\u3084\u3063\u3071\u308a\u3061\u3083\u3093\u3068\u30e1\u30e2\u3092\u53d6\u3089\u306a\u3044\u3068\u306a\u3042\u300d\u306a\u3093\u3066\u601d\u3046\u3053\u3068\u304c\u591a\u3044\u3067\u3059\u3002<\/p>\n\n\n\n
\u305d\u3053\u3067\u300c\u30d6\u30ed\u30b0\u306b\u8ad6\u6587\u306e\u30ec\u30d3\u30e5\u30fc\u3068\u304b\u66f8\u3044\u3066\u304a\u304f\u3068\u3044\u3044\u3093\u3058\u3083\u306a\u3044\u304b\u306a\uff1f\u300d\u306a\u3093\u3066\u601d\u3063\u3066\u3001\u624b\u59cb\u3081\u306b\u6570\u5f0f\u304c\u66f8\u3051\u308b\u30d7\u30e9\u30b0\u30a4\u30f3\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u3066\u307f\u308b\u3053\u3068\u306b\u3057\u307e\u3057\u305f\u3002<\/p>\n\n\n\n
\u691c\u7d22\u3059\u308b\u3068\u30a4\u30c1\u30d0\u30f3\u591a\u304f\u51fa\u3066\u304d\u305f\u30d7\u30e9\u30b0\u30a4\u30f3\u304c MathJax-LaTeX \u3068\u3044\u3046\u3082\u306e\u3060\u3063\u305f\u306e\u3067\u3001\u8a66\u3057\u306b\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u3066\u307f\u307e\u3057\u305f\u3002<\/p>\n\n\n\n
\u305f\u3060\u3001\u5b9f\u969b\u306b\u66f8\u3044\u3066\u307f\u3066\u308f\u304b\u3063\u305f\u306e\u3067\u3059\u304c\u3001\u73fe\u5728\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\uff08WordPress 5.7.2\uff09\u306b\u306f\u5bfe\u5fdc\u3057\u3066\u3044\u306a\u3044\u307f\u305f\u3044\u3067\u3059\u3002<\/p>\n\n\n\n
\u3068\u3044\u3046\u3053\u3068\u3067\u3001\u7d50\u679c\u3068\u3057\u3066\u306fMathJax-LaTeX\u306f\u4f7f\u3048\u307e\u305b\u3093\u3067\u3057\u305f\u3002<\/p>\n\n\n\n
\u6b21\u306b\u8a66\u3057\u3066\u307f\u305f\u306e\u304c Simple MathJax \u3068\u3044\u3046\u30d7\u30e9\u30b0\u30a4\u30f3\u306a\u306e\u3067\u3059\u304c\u3001\u4ee5\u4e0b\u306b\u51fa\u529b\u3055\u308c\u305f\u6570\u5f0f\u3092\u898b\u308b\u9650\u308a\u3001\u3053\u3063\u3061\u306f\u3061\u3083\u3093\u3068\u52d5\u304f\u3088\u3046\u3067\u3059\u3002<\/p>\n\n\n\n
\u4f7f\u3044\u65b9\u3068\u3057\u3066\u306f\u3001\u8868\u73fe\u3057\u305f\u3044\u6570\u5f0f\u3092LaTeX\u30b3\u30de\u30f3\u30c9\u3067\u66f8\u3044\u3066\u3001\u305d\u308c\u3092\u534a\u89d2\u306e\u201d\uff04\u201d\u8a18\u53f7\u3067\u56f2\u3081\u3070OK\u3067\u3059\u3002\u6587\u4e2d\u306b\u6570\u5f0f\u3092\u5165\u308c\u308b\u5834\u5408\u306f\u201d\uff04\u201d\u3092\u4e00\u3064\u3001\u6539\u884c\u3057\u3066\u6570\u5f0f\u3092\u5358\u72ec\u3067\u8868\u793a\u3055\u305b\u305f\u3044\u5834\u5408\u306f\u201d\uff04\uff04\u201d\u3068\u3044\u3046\u3075\u3046\u306b\u3001\u534a\u89d2\u8a18\u53f7\u30922\u3064\u91cd\u306d\u305f\u3082\u306e\u3067\u56f2\u307f\u307e\u3059\u3002<\/p>\n\n\n\n
\u4ee5\u4e0b\u3001\u7df4\u7fd2\u3068\u3057\u3066\u8a66\u3057\u306b\u3044\u308d\u3093\u306a\u6570\u5f0f\u3092\u51fa\u529b\u3057\u3066\u307f\u307e\u3059\u3002<\/p>\n\n\n\n
\u30b7\u30e3\u30ce\u30f3\u30a8\u30f3\u30c8\u30ed\u30d4\u30fc<\/p>\n\n\n\n
$$H(X)=\\sum_{x \\in \\mathcal{X}} -p_x \\log p_x$$<\/p>\n\n\n\n
\u4f5c\u7528$S$\u3068\u30e9\u30b0\u30e9\u30f3\u30b8\u30a2\u30f3$L(x,\\dot{x},t)$<\/p>\n\n\n\n
$$S = \\int L(x,\\dot{x},t) dt$$<\/p>\n\n\n\n
\u30b7\u30e5\u30ec\u30fc\u30c7\u30a3\u30f3\u30ac\u30fc\u65b9\u7a0b\u5f0f<\/p>\n\n\n\n
$$ i \\hbar \\frac{\\partial \\psi}{\\partial t} = H \\psi(x,t) $$<\/p>\n\n\n\n
identity operator \u3068 Pauli\u884c\u5217<\/p>\n\n\n\n
$$\\mathbb{I} = \\begin{pmatrix}
1 & 0 \\\\
0 & 1 \\\\
\\end{pmatrix}, \\sigma_x = \\begin{pmatrix}
0 & 1 \\\\
1 & 0 \\\\
\\end{pmatrix}, \\sigma_y = \\begin{pmatrix}
0 & -i \\\\
i & 0 \\\\
\\end{pmatrix}, \\sigma_z = \\begin{pmatrix}
1 & 0 \\\\
0 & -1 \\\\
\\end{pmatrix}$$<\/p>\n\n\n\n
entanglement\u306e\u4f8b\u3067\u3088\u304f\u51fa\u3066\u304f\u308bsinglet state<\/p>\n\n\n\n
$$ \\ket{\\psi} = \\frac{\\ket{01}-\\ket{10}}{\\sqrt{2}}$$<\/p>\n\n\n\n
\u91cf\u5b50\u7cfb\u306b\u304a\u3051\u308b\u4e00\u822c\u7684\u306a\u6642\u9593\u767a\u5c55\uff08Stinespring\u8868\u73fe\uff09<\/p>\n\n\n\n
$$ \\rho \\longrightarrow \\rho’ = \\mathrm{Tr_E}[U(\\rho \\otimes \\rho_E)U^{\\dagger}]$$<\/p>\n\n\n\n
\u305d\u3093\u306a\u308f\u3051\u3067\u554f\u984c\u306a\u304f\u52d5\u3044\u3066\u3044\u308b\u3088\u3046\u3067\u3059\u3057\u3001\u3053\u308c\u304b\u3089\u306f\u3053\u306e\u30d7\u30e9\u30b0\u30a4\u30f3\u3092\u4f7f\u3063\u3066\u52c9\u5f37\u3057\u305f\u3053\u3068\u306a\u3069\u30e1\u30e2\u3057\u3066\u3044\u3053\u3046\u3068\u601d\u3044\u307e\u3059\u3002<\/p>\n\n\n\n
\u3082\u3057Wordpress\u3067\u6570\u5f0f\u3092\u8868\u793a\u3055\u305b\u305f\u3044\u65b9\u304c\u3044\u307e\u3057\u305f\u3089\u3001Simple MathJax \u3092\u4f7f\u3063\u3066\u307f\u3066\u304f\u3060\u3055\u3044\u3002<\/p>\n","protected":false},"excerpt":{"rendered":"
\u6700\u8fd1\u3001\u8ad6\u6587\u3092\u8aad\u3093\u3067\u3082\u982d\u306b\u6b8b\u3089\u306a\u3044\u611f\u3058\u304c\u3057\u3066\u3001\u300c\u3084\u3063\u3071\u308a\u3061\u3083\u3093\u3068\u30e1\u30e2\u3092\u53d6\u3089\u306a\u3044\u3068\u306a\u3042\u300d\u306a\u3093\u3066\u601d\u3046\u3053\u3068\u304c\u591a\u3044\u3067\u3059\u3002 \u305d\u3053\u3067\u300c\u30d6\u30ed\u30b0\u306b\u8ad6\u6587\u306e\u30ec\u30d3\u30e5\u30fc\u3068\u304b\u66f8\u3044\u3066\u304a\u304f\u3068\u3044\u3044\u3093\u3058\u3083\u306a\u3044\u304b\u306a\uff1f\u300d\u306a\u3093\u3066\u601d\u3063\u3066\u3001\u624b\u59cb\u3081\u306b\u6570\u5f0f\u304c\u66f8\u3051\u308b\u30d7\u30e9\u30b0\u30a4\u30f3\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u3066\u307f\u308b\u3053\u3068\u306b\u3057\u307e\u3057\u305f\u3002 \u691c\u7d22\u3059\u308b\u3068\u30a4\u30c1\u30d0\u30f3\u591a\u304f\u51fa\u3066\u304d\u305f\u30d7\u30e9\u30b0\u30a4\u30f3\u304c MathJax-LaTeX \u3068\u3044\u3046\u3082\u306e\u3060\u3063\u305f\u306e\u3067\u3001\u8a66\u3057\u306b\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u3066\u307f\u307e\u3057\u305f\u3002 \u305f\u3060\u3001\u5b9f […]<\/p>\n","protected":false},"author":1,"featured_media":1814,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"footnotes":""},"categories":[34],"tags":[],"class_list":["post-1778","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-34"],"_links":{"self":[{"href":"https:\/\/yupon01.com\/index.php?rest_route=\/wp\/v2\/posts\/1778","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/yupon01.com\/index.php?rest_route=\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/yupon01.com\/index.php?rest_route=\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/yupon01.com\/index.php?rest_route=\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/yupon01.com\/index.php?rest_route=%2Fwp%2Fv2%2Fcomments&post=1778"}],"version-history":[{"count":37,"href":"https:\/\/yupon01.com\/index.php?rest_route=\/wp\/v2\/posts\/1778\/revisions"}],"predecessor-version":[{"id":1816,"href":"https:\/\/yupon01.com\/index.php?rest_route=\/wp\/v2\/posts\/1778\/revisions\/1816"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/yupon01.com\/index.php?rest_route=\/wp\/v2\/media\/1814"}],"wp:attachment":[{"href":"https:\/\/yupon01.com\/index.php?rest_route=%2Fwp%2Fv2%2Fmedia&parent=1778"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/yupon01.com\/index.php?rest_route=%2Fwp%2Fv2%2Fcategories&post=1778"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/yupon01.com\/index.php?rest_route=%2Fwp%2Fv2%2Ftags&post=1778"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}